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Dynamics of Ising random-bond models: neural network 
and random-anisotropy-axis model 

D R C Dominguez and W K Theumann 
Instituto de Fisica. Universidade Federal do Rio Grande do SUI Caixa Postal 15051,91501-970, 
Porto Aiegre, RS, Brazil 

Received 24 June 1994 

Abstract. A discrete-time retrieval dynamics for a class of random-bond models with infinite- 
range interactions is studied in a unified picture. The Hopfieid model of neural networks with 
the Hebb leaning rule is considered together with the Ising random-anisotropy-axis model in 
the strong-anisotropy limit. The main overlap (magnetization), the residual overlap and its 
dispersion, as well s t h e  correlation between the Gaussian component of the residual overlap 
and the initial value of the latter, obtained in the fust step of a recursion relation, are used to 
infer the sttuctm of the recursion for large times. A crucial assumption is the Strong stationarity 
of the Gaussian component. The dynamics are discussed for finite CI = p / N  (the storage ratio 
in the neural network problem or the ratio of nndom-axis components per site) in the limit 
where both p and N go to infinity. The long-time behaviour of the theory is shown to yield 
the equilibrium solution of an earlier work in mean-field theory, for a tri-modal distribution of 
random-axis components. Explicit results for the basins of amaction of either a ferromagnetic 
or a spin-glass phase are obtained, as well as the relaxation time with a square-root power-law 
decay near saturation. 

1. Introduction 

The equilibrium properties of the Hopfield model of neural networks (NN) with the Hebb 
learning rule [l-31 and those of the isomorphic Ising random-anisotropy-axis model (RAM), 
in the strong anisotropy limit [4-8] have been studied extensively in recent years and are 
now well understood. These are systems which can be described by a quenched king 
random-bond Hamiltonian 

with spins ui =. i 1  (active or inactive neuron, respectively) on the sites (neurons) 
i = 1, . . . , N .  The interaction Jij (synaptic matrix) has the generalized Hebbian form 

Jjj = J n i  nj 

in which the components (nf,  f i  = 1 , .  . . , p ]  are random numbers representing the 
embedded patterns (nf = f l )  in NN or the random-axis components in the IRAM. 
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64 D R C Dominguez and W K Theumann 

The IRAM describes the unusual properties of amorphous intermetallic compounds 
through the strong-anisotropy limit of the Hamiltonian [9] 

N N 

H N ( ( S ~ ] ) = - J ~ S ~ . S ~ - D ~ ( ~ ~ . ~ ~ ) *  (3) 
i#j  id 

when D / J  + CO, in which case the spins tend to align with the anisotropy axis, such that 
si = njui and (3) reduces, up to a constant, to (1) with Jij given by (2). 

Different probability distributions for the random vectors are of interest in the two 
models. whereas a diagonal distribution is appropriate for NN, isotropic and cubic- 
anisotropic distributions have been used for the IRAM. In a recent work in mean-field theory 
(m) on the IRAM we discussed the effects of the tri-modal distribution [lo] 

p(nP) =b[6($ -a)+s( f l :+a)] /Z+( l -b)6( f l~)  (4) 

of independent identically distributed random variables (IIDRV), where baz = 1 and in 
which b = 1 corresponds to the diagonal case. It was shown that magnetic ordered states 
with a finite magnetization appear for both finite p and in the large-component limit below 
a critical value of o! = p / N  (the storage ratio of the NN problem) and that the size of 
the magnetic region shrinks with decreasing b in a (or. T )  phase diagram, T being the 
temperature (synaptic noise in NN). The magnetic states correspond to finite overlaps with 
the stored patterns in the NN analogue and they can be characterized by locally or globally 
stable states. 

Whereas m is appropriate for the NN problem (below the critical storage capacity ore) 
because of the large number of neurons in synaptic contact with a given neuron (- lo4) 
it is certainly only an approximation (albeit a valuable one) for the IRAM with finite-range 
interaction. Careful numerical simulations for the NN problem above orc yield results which 
are not explained by MFT at T = 0 [3]. 

Nevertheless, it is of interest to have a dynamics to check the MFT results in the long- 
time limit, and numerous works have been devoted to the NN problem [Il-211 (although 
none, to OUT knowledge, to the IRAM). 

Parallel (synchronous) dynamics, studied in the absence of external noise, is one in 
which the spins are updated according to the rule 

ui.0 + 1) = sgn[hi(t)l (5) 

hi@) = C J i j U j ( t ) .  (6) 

Recursion relations for the main and residual overlaps in a retrieval dynamics for the NN 
problem have been derived by Patrick and Zagrebnov (PZ) [21]. While the first and second 
steps in the recursion yield the Kinzel and Gardner-Derrida-Mottishaw results [ I  1,121, 
respectively, the third step and the conjectured general structure were of no use in giving a 
clue as to the long-time behaviour. It was instead argued that the latter follows from a set 
of plausible stationarity assumptions concerning the main and residual overlaps in the limit 
N + CO and from a Gaussian distribution with a timedependent variance, for the residual 
overlaps. The long-time behaviour that follows is that of m 131. An alternative signal-to- 
noise ratio analysis has been carried out by Amari and Maginu (AM) [22]. Recent Monte 
Carlo simulations by Nishimori and Ozeki [23] seem to confirm their main assumption 
for retrieval dynamics of a Gaussian- distributed residual overlap with a time-dependent 
variance. 

where the local field is defined as 

i # j  
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The main purpose of this paper is to present a simpler and more general derivation of 
a deterministic (i.e. without external noise) discretetime retrieval dynamics which enables 
one to identify the basic conditions which lead to the stationary MFT results in the long-time 
limit, in contrast to previous works [21,22]. Our aim is to do this for a general distribution 
of random {nf 1. We show that our purpose can be achieved in terms of three macrovariables: 
the main overlap, the dispersion of the residual overlap and the correlation of the Gaussian 
component of the residual overlap at the next time step with the residual overlap itself. We 
show that the structure of the equation for the correlation depends on a strong-stationarity 
assumption for the Gaussian component. Alternative studies of a retrieval dynamics by 
Shukla [24] and by Coolen and Sherrington [25] have appeared recently. 

A further aim of our work is to study the basins of attraction for the IRAM and the 
NN problem with the tri-modal distribution of random variables given by (4). We do not 
consider non-retrieval dynamics for which the assumption of a Gaussian distributed noise 
is presumably incorrect. 

The outline of the paper is the following. In section 2 we present some formal relations 
for the low and high components of the overlaps. In section 3 we discuss the first step 
of the recursion, and in section 4 we consider the extension to large times and we show 
there the results for the attractors. Comparison with some previous works 121,221 is made 
throughout the paper. We conclude in section 5 with a few remarks, and comment on the 
relationship between our work and Shukla's. A brief presentation of formal results for a 
stochastic noisy (finite-temperature) dynamics is also included. 

2. Formal relations 

The main variable of interest is the overlap (or magnetization) vector 
1 

" ( t )  = - njuj(t) 
N j  

(7) 

with components m N  = (mf,,) at time step t ,  in terms of which the local field in MFT may 
be written as 

where "&) is defined by the sum in (7) with the term j = i excluded. Given the 
magnetization at f = 0, the magnetization at t = 1 follows from (5) and (7). 

Following earlier work, we are interested in the time evolution of the magnetization 
with a single macroscopic component of order unity and ( p  - 1) remaining components of 
0(1/,@) in order to ensure a finite magnetization. We write, accordingly, 

and 

This will be useful for studying the evolution of the main overlap (the main component of 
the magnetization) 

mi = limmN(f) (11) 
U 
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in the so-called @-limit, or lima, in which 01 = p / N  is kept finite while p and N + W. 
Here 
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is the first component of ” ( f ) ,  which is of o(1). Since the remaining components are of 
O(l/&), it is convenient to define tKe finite residual overlap 

L$(t)  = f i z ; ( r )  (13) 
in which 

The internal field (8) may then be written as 

hNi(f) Pimwi(f) + W ~ i ( f )  (15) 

W N i @ )  E & . L N i ( f ) / f i  L N i  = { L $ i ; P = & . . . , P l  (16) 

Next we apply these formal relations to work out explicitly the main overlap and discuss 

where 

is the noise term. 

the probability distribution for the noise, in the first step. 

3. First step in the recursion 

Let the initial configuration (uj(f = 0); j = 1 , .  . . , N I  be such that the main overlap 

limmN(r = 0) = mo (17) 
(L 

is finite, of 0(1), and 

(Lt;) = 0 ((Lt)*) = I ;  

Lt; ze lim L$ (0) 
where the initial residue defined by 

is a random variable in p of a further unspecified distribution. 
Here we relax the usual strong initial condition that uj(0) be uncorrelated with the {(:I 

which yields a variance of the residual overlap in the lim, equal to a, in place of 1;. We 
assume instead the weaker condition that the residue L t  be independent of the {$‘I. This 
ensures that the averages of the first two moments of these quantities factorize into a product 
of averages. 

3.1. Main overlap 

If the noise converges to a sequence 00 of nDRV (a point to be justified below) then the 
lim, of the main overlap, equation (12), in the first time step becomes, with the law of large 
numbers, 

mi = ( P ~ O ) ) ~ , ~  
= (P sgn(ho))p.w (20) 
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making use of (3, in which 

ho=pmo+oo.  
Here 

ho = limhx(t = 0)  
0 

is the limiting initial intemal field and 

WO = limwN(t = 0) 
CL 

while the brackets denote the average over both the probability distribution of the initial 
noise and over p. 

To justify the convergence of the noise term we follow Pz and note that w ~ i ( O ) ,  given 
by (16), is a sum of nDRV to which the central limit theorem (CLT) can be applied so that 

in which the left-hand-side is distributed (=) as a Gaussian random variable z with a mean 
of zero and unit variance. From (16) 

(WO)  = lim(oEii(0)) 

= (L!&(o)tr) /J j j  (25) 
P 

and this vanishes, (i.e. (00) = 0) due to our assumption of independence of Lo” with [(r} 
and the distribution in (4). This is also in accordance with other authors [21,22]. Similarly, 
the variance 

(26) 
1 

var(w0) = lim - v a r [ ~ $  (o)$‘] 
* P P  

becomes 

= 1: (27) 
from (18). Thus with the first two moments of o ~ i ( 0 )  in the lim, we have for the initial 
noise that 

0 0  = loz (28) 
where z is a Gaussian random variable with a mean of zero and unit variance. This should 
be compared with the distribution of width f i  of other authors [21,22]. 

Note that the average over the noise of the sign of the local field can now be calculated 
and this yields 

W S ~ N M O ) I ) ~  (L = erf(Xap/z/2) (29) 

erf(x /A) fi [ dz e-‘’/’ . (30) 

mi = ~ ( x o )  = (Perf(.w/J3)p (31) 

in which xo 5 moll0 and 

0 

We are now able to write down the lim, of the main overlap in the first step as 
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with the remaining average over the distribution of p. This is the generalization of Kinzel‘s 
result for the overlap for all time, which yields a critical 01, - 0.64 for retrieval with a finite 
overlap [ 1 I]. This first-step result is exact only for the dilute network 1131 and is far from 
the statistical mechanical result of 0 1 ~  - 0.14 for the fully connected network [3]. 

3.2. Residual overlap 

To continue with the first step we now consider the evolution of the residual overlap which 
involves the high components of the magnetization. In the noise term (16) it is convenient 
to separate a part for a given p 

”(0) = L ; ( o ) e p / f i +  UN@) (32) 
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where, for simplicity, the site dependence has been suppressed and in which the remainder 
noise 

is distributed in the lii, 

lim v ~ ( 0 )  = loz (34) 

as a Gaussian random variable of mean zero and variance 1;. This follows from the CLT 
applied to the sequence [Lt;f”),  U # p. 

Next we consider the local field (15) and use (32) to write 

hN(o) = h W o  + L $ 5 W ) / f i  (35) 

(36) 

where 

fi(0)lO = P”(0) + U N ( 0 ) .  

Using the fact that, from (13), L$(O) of order unity is much smaller than fi, we 
expand 

to first order in l / f i  to be used in the expression for the residue 

in the first step. It should be noted that {Ai} is not a set of independent random variables, 
as pointed out in a somewhat different context by Pz [ZI]. Indeed, 6; is correlated with 
sgn[h~k(O)], if i # k, through a term proportional to L;,(O)/fi.  Note, however, that this 
is a weak correlation, implying that the CLT may still be used for the distribution of L;(l). 

The content of the theorem in this context is that 

in which the left-hand side is again distributed as a Gaussian random variable of mean zero 
and unit variance, and 

Var(Ai) = a / N  (40) 
follows from (38). 
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Moreover, we may write 

N P i )  = f i ( tr(sgn[hNi (0)1)z)4p (41) 
where the averages are to he taken over the distributions of 6, p and z .  In the liQ, the 
interesting limit for our purpose, equation (41) yields 

lim(N(Ai)) = -G(xo) 

where L t  has been defined in (19) and 

(42) L: 
lo 

W O )  = m( exp [ - ( X O P ) ~ / ~ ] ) ~  (43) 

in which xo = mo/lo. On the other hand, the variance of LE becomes U, through 
equation (40). 

Theorem In the lib, the residue Ly in the first time step,’defined as 

We are now able to state the following theorem. 

L” 1 -  = limLE(1) a (44) 
is given by the stochastic equation 

where z1 is a Gaussian random variable with mean zero and unit variance in the first time 
step. 

A similar but more restricted relationship has been derived by pz [21] and AM 1221. To 
complete the proof of (45) through the CLT we must ensure the condition in Liapunov’s 
theorem for uniform convergence to a Gaussian. This condition requires that 

for some 0 < S < 1 and vanishes in the h i t  of validity of (45). Here 

M i  G ((Ai - (Ai))”).  (47) 
Indeed, we find that as = 0(1/N) with a coefficient which can be explicitly calculated for 
S = 1 .  

3.3. Correlation of the residue 

Defining 

for any time step t 2 0, we note that the variance of Lp becomes, with equation (45), 

IT = U + Z&COG(XO) + [G(xo)]’. 

CO = (Zl L:)/lo (50) 

(49) 
Here 

is the correlation between the Gaussian component of the residue in the first time step and 
the initial residue. This is, in general, non-zero, except in the perceptmn layered NN problem 
1191. 
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Postulating that a relationship like (49), relating the dispersion of the residue in the first 
time step to initial quantities, applies between two consecutive time steps at almost all later 
times and anticipating the following section, we define for the second step the correlation 

c1 = (zzLy)/ll (51) 

c: < ( ( z z ) ~ ) ( ( L ~ ) ~ ) / l :  = 1 (52) 

to be determined in the first time step, where zz  is a Gaussian random variable with mean 
zero and unit variance in the second step. Note that 

yields a bound for cI. 
We do not know how the Gaussian component of the residue at a given time step, z,, 

is related to that at a previous time. If they were the same (a point to be discussed next) 
the average in (51), making use of (45). becomes 

ci = [&+ coG(xo)l/h. (53) 
We now have (31), (49) and (53) for m1 ,h  and CI, completely describing the first 

step of the recursion. Although we expect the first two to be exact, the latter rests on the 
assumption on Z Z .  

4. Attractors 

Here we are interested in the asymptotic behaviour of the model in which the equilibrium 
situation is reached. With that purpose we postulate, with no proof, the strong stationariry 
of Z ,  for long times in which 

Zr = z (54) 
is distributed as a Gaussian random variable with mean zero and unit variance. If LfL is at 
most weakly dependent on [5:] for almost all t so that the conditions for (27) apply in the 
li&, then the noise would become 

wr l r z  (55) 
that is, a Gaussian random variable with mean zero and variance 1:. Although we cannot 
prove this rigorously, we checked by means of an expansion like that in (37) that the average 
of LfL with 5; vanishes to order l/.Ji? and that the average 

C”” = (L; ( t )$”LwF”)  (56) 
also needed in the proof vanishes as I / p  in the lima. 

Having the exact equation for the main overlap and the residue at the first time step, 
we assume they have the right structure for almost all t .  With the strong stationarity of z t ,  
equation (53) yields the corresponding recursion relation between cr and cr+l, in which 

cr = ( z ~ f ) / L t  . (57) 
We thus have the stochastic equation 

(58) 
L” 

L L ,  = fG(x,) + &z 
r 

and the deterministic equations 

= 01 + 2&crG(xt) + [G(xJlz 

~ t + i  = [J;;+ctG(xi)l/~r+i 
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F i e  1. Convergence of the parameter c, to asymptotic behaviour c* = 1 for II = 0.1.0.05 
and 0.02, when I( = 0 (i.e. b = 1). with initial main overlap mo = 0.55 and initial dispersion 
10 5 0.5. The approach of c, to c* = 1 indicates the onset of the equilibrium solution discussed 
in the text. 

for ahnost all t ,  in extension of (45), (49) and (53) where x, = m,/I,  and 

mr+i = H(xr) (61) 

is the recursion relation for the main overlap, with H ( x )  given by (31). 
In generalizing our equations for the first time step we proceeded in a different way 

to PZ [Zl], who generalized their first step equation to the long-time limit introducing an 
appropriate variance for the residual overlap. Here we have one more parameter , cy, whose 
long-time recursion relation depends on the strong stationarity of z t ,  except in the perceptron 
case, where cr is identically zero and (59) becomes the exact equation for the dispersion of 
the residue [19,26]. Equations (58x61) also generalize the results of AM [ZZ]. 

We are interested in the stationary states of the equations. The stable states represent 
configurations in which the macroscopic properties take their equilibrium values and the 
basins of attraction provide an idea of the domain~of stability of these solutions. 

The formal results, so far, are for a general distribution of ( n r ] .  Using equation (4) 
the numerical solution of the equations with various initial values for the parameters reveal 
that the fixed-point solution cx = c,+l = c, = 1 is the only stable solution reached after 
a few time steps, as shown in figure 1 for various values of a when U 1 - b = 0, and 
initial values mo = 0.55 and 10 = 0.5. The curve for a = 0.1 corresponds to initial values 
slightly inside the ferromagnetic (retrieval) phase shown in figures 2 and 3, while the other 
two curves correspond to points well within that phase. Note that the convergence to the 
asymptotic behaviour is slower for larger a. A similar behaviour follows for increasing 
values of U ,  except that the convergence to asymptotic behaviour is slower. When c* = 1 
is reached equations (59) and (60) become the same and, together  with (61), they coincide 
with the equilibrium solutions for the main overlap and the dispersion of the residue at 
zero temperature (no noise) of our earlier work [lo]. Thus, the long-time behaviour of our 
equations yields the expected equilibrium mean-field-theory results that generalize the work 
of Amit et al [3]  within replica symmetry. This is a strong indication of the correctness of 
our assumptions. 
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Figure 2 Boundaries of the basins of amaction (full CUN-) of either the ferromagnetic (F) or 
spin-glass (so) phase for two values of U (equation (4)) as functions of the initial main overlap 
ma and U = p f N ,  for lo = 0.5 and m = 0. The fixed-poinr values m-. for D = 0 and 0.2, an 
given by the upper and lower broken curves, respectively. 

Figure 3. Boundaries of the basins of attraction. as in figure 2, for the initial dispersion of the 
residue, lo, for mo = 1 and cn = 0. 

Numerical results for the basins of attractions are shown in figures 2 4  for two values of 
U = 1 - b. There are two distinct regions which constitute the domains of attraction of the 
ferromagnetic (F) and spin-glass (SG) regions on either side of the full curves. The former is 
characterized by a stable fixed-point solution m* = m,+l = m, with m* # 0, while m* = 0 
for the latter. Figure 2 shows the basins of attraction as functions of the initial overlap 
mo, for given CO and 10. The ferromagnetic (retrieval) region cannot be reached unless mo 
is larger than a critical value m&) lying on either one of the curves for a given 01, even 
if 01 c 0 1 ~ .  the critical storage capacity. Here 01, = 0.138 and 0.056 for U = 0 and 0.2, 
respectively, are the values where the phase boundaries become vertical. The final stable 
values for m* z 0 are also shown (the upper dotted curves). If mo c m&), the fixed point 
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-1.0 ’ 
0.00 0.05 a o m  

Figure 4. Boundaries of the basins of amaction, as in figure 2. far the initial correlation CO, far 
mo = I = b. 

m’ = 0 (not shown in the figure) is reached instead. 
The basins of attraction as functions of the initial dispersion of the residue lo, for given 

CO and mo, are shown in figure 3. If lo is larger than a critical value I&) for a given a ,  
there is a spin-glass-like phase, even if (Y < a,, as one would expect. Similarly, if the initial 
correlation CO =- cc(a),  one also ends up with a spin-glass-like phase, even if a c a,, as 
can be seen from the basins of attraction in figure 4. 

Another quantity of interest is the relaxation time r to the limiting m*, such that 

Im, - m*I - exp(-tlr). (62) 
As noted by Meir and Domany [26] in the context of layered feed-forward networks, there 
is a ‘critical slowing down’ with a divergent relaxation time as a + a,, even though the 
transition to ferromagnetism (retrieval) is of first order. This is due to the merging of 
the stable and unstable branches for m* as a! + aC, so that the fixed point at or, is only 
marginally stable. We find that this also takes place in our case when (59x61) are solved 
and Im, - m,+ll is fitted to (62) for increasing f. The numerical solution of our equations 
in the vicinity of the fixed point yields for 

z = (ac -a)-” (63) 
U = 0.51 k0.03, as sliown in figure 5 when U = 0, which is the same as the layered-network 
result. 

5. Discussion and further results 

We formulated a discrete-time retrieval dynamics in the absence of external noise and 
discussed the conditions that have to be met in order to set up the recursion relations for 
the first time step. We obtained the main overlap and residue (the lim, for the residual 
overlap), the dispersion and the correlation of the Gaussian component of the residue with 
the initial residue. We proceeded differently than Pz 1211 and AM [22] in order to derive a 
retrieval dynamics based on weaker initial conditions and also to be able to derive results 
for a generalized distribution of random variables. 
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D 

Figure 5. Loganthmic plot of the relaxahon ume ne% c a f m o o  (equxion (63)) for U = 0 Thc 
best fit of the solution of (59H61) to (62) gives v = 0.51 I 0.03. when U = 0. 

Since it seems very difficult to obtain the general structure of the equations rigorously for 
all times from a step-by-step procedure, as recognized by Pz [Zl], we proceeded assuming 
that OUT equations for the main overlap and stochastic residue have the right structure for 
almost all times if the Gaussian component of the residue satisfies a strong-stationarity 
hypothesis which seems reasonable for long times. In distinction to [21,22], OUT equations 
contain an additional macrovariable: the correlation ci between the Gaussian component of 
the residue in the next time and the residue itself. When the fixed-point equations are solved 
for OUT retrieval dynamics we recover the MF? results of OUT earlier work for a trimodal 
distribution of random variables which generalize the replica symmetric work of Amit et 
al. In this work we have not considered non-retrieval dynamics to account for remanence 
memory effects. In distinction to the recent retrieval dynamics formulated by Coolen and 
Sherrington [25], who used the replica method to catculate explicitly the intrinsic noise 
distribution which yields the replica-symmetric equilibrium MF? results, we obtain these 
without using the replica method. 

At this point, a comparison afar work with that of Shukla [24] for the NN problem is 
in order. Following Pz, we aimed at a microscopic derivation of the equations, which goes 
beyond a signal-to-noise ratio analysis [22] for the main overlap, the residue, the dispersion 
of the residue and the correlation of the Gaussian component as macrovariables of the 
system. These are all quantities that can be calculated. In contrast, reference [24] presents 
a macroscopic description for the main overlap in terms of the dynamical energy per bit (or 
energy per spin) in the thermodynamic limit, e @ ,  t ) .  This is very difficult to obtain but a 
signal-to-noise ratio argument was used to suggest an energy-conserving parallel dynamics 
for the NN problem in which e(a, t )  = -0.5 for 01 6 0.14 and d l  times after the initial time 
step. Thus, e(@ = e @ ,  f) takes the fixed-point value proposed earlier by Kohring [16]. In 
the low storage limit for the NN case (b = 1) OUT equations yield (at large times and when 
c, 3 1) the result 

to leading order in a. These equations coincide with Shukla's equations (3.12) and (3.14). 
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For higher values of a the two dynamical theories differ. Our results are those of replica- 
symmetric MFT [3], for any a ,  whereas the numerical simulations in [24] are done for a 
limiting a between the replica-symmetric results and the value found in previous numerical 
simulations that agree very well with first-step replica-symmetry breaking [27]. 

The dynamics discussed in this work, in the li&, can be extended to other NN problems. 
The case considered in this work is the retrieval dynamics of a network trained with simple 
patterns. An interesting extension, which is being studied, is the generalization dynamics 
for a network trained with examples. 

The noiseless (zero-temperature) dynamics can be extended [21,24] by adding noisy 
terms 4i, i = 1, . . . , N to the internal field so that 

U<@ + 1) = Sgn[hi(t) + 4iI 

P($< x )  = $1 +tanh(bx)l 
where fl  is the inverse temperature. The conditional probability that the spin takes a value 
ui(t) given the internal field hi at the previous step is then 

(65) 

in which {&} are IIDRV with a probability distribution 

(66) 

P[ui(f)lhi(t - l)] = exp[~hiui(f)l/[2cosh(ghi)l. 

(o(t))+ = tanh[DA(t)l (68) 

A(t) = pm, + I re  (69) 

(67) 

The calculation of the main overlap requires the average over 4 

in which 

where z is a Gaussian random variable with mean zero and unit variance. This yields 

mt+l = (P~h[bA(Ol) , . ,  (70) 

for the main overlap and 

for the stochastic residue where 

Gg = ( z  tanh[flA(f)])p,. (72) 

4+1 - ~ + & c ~ G ~ + G ;  - (73) 

ct+l = [Jr;+ c , G p I / l t + ~ .  (74) 

We also obtain, with the strong-statiouarity assumption, the variance of the residue (71) 

and its correlation with the Gaussian component at the next time 

When ct converges to the stable fixed-point solution c* = 1 this equation and (70) reproduce 
the finite-temperature equations of our earlier work in m. 
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